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A new algorithm is presented for determining whether or not a point lies inside a polygon. 
The method is particularly useful when the coordinates of point and polygon are given with 
respect to a multi-dimensional coordinate basis. The polygon must be convex and connected, 
but may be open. As a corollary, a method to determine the convexity of a polygon is 
revealed. 

1. INTRODUCTION 

An interesting, and superficially simple problem in computational geometry is 
that of determining whether or not a query point P lies in the interior of a polygon 
if it lies in the plane of the polygon. This is a significant question whose answer is 
often required when tracking particles in a Monte Carlo program; usually the ques- 
tion is asked many times and an efficient algorithm is crucial. Littlelield [i] has 
recently rediscovered Shimrat’s algorithm [S], noting that a well-known textbook 
[3] claims that a “simple, quick solution for arbitrary non-convex polygons” does 
not exist. 

In separate work, Wooff [6], Preparata and Shamos [4], and Mehlhorn [2], as 
well as Yamaguchi [7] give different algorithms to solve the same problem. The 
first of these algorithms is valid for arbitrary non-convex polygons in the plane, the 
second is limited to convex and “star-shaped” polygons but can be generalized, 
and the third is designed for problems in computer graphics; most suffer from 
deficiencies, described in Section 3 in more detail. 

A practical algorithm to answer this question when the polygon lies in a plane 
skewed in space (i.e., the vertices are specified by three space coordinates with 
respect to some global coordinate system) is not immediately evident from most of 
these oeuvres. Additionally all but one of them fails when the polygon in question 
is open-that is two sides extend to infinity. (Such polygons are easily generated in, 
for example, hidden surface computations where they may represent the outlines of 
the shadow of some polygon R projected onto a plane Q from a point source S, if 
a plane parallel to Q through S happens to cut R-see Fig. 1.) The intent of this 
paper is to review the known methods and to present a new, efficient algorithm 
to answer this question, valid for all convex polygons, open or closed, in 
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INTERSECTION OF PLANE PARALLEL TO 0 

POLYGON 

FIG. 1. How to generate an open polygon. 

n-dimensional space (n > 2). However, they must be convex and topologically con- 
nected (contain no holes). The particular application is to Monte Carlo computer 
programs where the (N) vertices of geometrical objects (polygons) are computed 
once and for all, but the query point P is generated many times and the question 
must be answered quickly for each point, for a relatively small number of vertices 
at a time. As a corollary, a method has been found to test for the convexity of a 
polygon in n-space, and the method easily generalizes to spaces of more than three 
dimensions. 

2. NOTATION 

Although conventional methods of computational geometry use homogeneous 
(Desarguesian) coordinates, we shall confine ourselves to traditional methods 
of vector algebra. A polygon with N-sides is determined by N vertices Vi 
(i= 1, . . . . 1, N) using three coordinates Vi = (V,, V,, L’,)i with respect to a global 
reference system (Fig. 2a). An open polygon may be conveniently represented by 
the same N vertices, but only N- 1 sides (Fig. 2b). Thus a list of: 

(i) 3N vertex coordinates, 

(ii) the number of items in the list (N) 

(iii) the number of sides (N or N- 1) or equivalently a logical flag, 

contains sufficient information to define a polygon and its open/closedness. If two 
bounding edges extend to infinity, we use the convention that V, and V, are any 

FIG. 2. (a) A polygon skewed in space, viewed from “above.” (b) Ati open polygon skewed in space, 
viewed from “below.” 
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two points on each of the bounding edges, provided they lie between the vertices 
V, and V, _ I, respectively, and the extension to the point at infinity. Furthermore, 
we use the convention that Vi (i= 1, . . . . N) are ordered so that they appear in clock- 
wise order if the polygon is viewed in the direction opposite to the outward facing 
normal (front ways). It is also assumed that the point P = (P,, P,, P,) is known to 
lie in the plane containing Vi (i = 1, . . . . N). The extension to more than three dimen- 
sions is obvious. 

3 

(a) Shimrat’s Algorithm 

Temporarily, let us assume we are working with two component vectors-i.e., all 
coordinates are given with respect to a system with x - y axes lying in the plane of 
the polygon. In References [ 1,4,5] the suggestion is made that a horizontal line be 
drawn from the point P to the point at infinity. If: 

(A) the y-coordinate of P is greater than or equal to the minimum value and 
less than the maximum value of the y-cordinates of two contiguous vertices, then 

(B) the x-coordinate of the point of intersection is found. 

If this coordinate is less than the x-coordinate of point P, it is counted, otherwise 
not; the test is repeated for all pairs of vertices. An odd/even number of counts 
means that P is within/without the polygon. The algorithm works for non-convex 
and disconnected polygons (Fig. 3a). 

Suppose the polygon is open to infinity, however (Fig. 3b). A uniform convention 
such as that described in Section 2 cannot be relied upon, since the vertex V, 
and/or VN may or may not satisfy the condition (A). This may be overcome by 
using two slopes plus vertices V, and YN- 1 to define the bounding edges of an 
open polygon, but these two edges must then be treated differently from the others, 
introducing a further degree of complexity. More importantly, when points and 
vertices are specified in full 3-dimensional generality, there are only two clear ways 
to proceed, each of which has problems or complications. 

FIG. 3. (a) Shimrat’s algorithm for points P, and P, uses a horizontal line in the plane extending 
to co. “X ” indicates the intersection point(s) that will be calculated. (b) The horizontal line algorithm 

applied to an open polygon does not work. 
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The most obvious method requires that the coordinates of every point P be 
rotated into a coordinate system with z-axis perpendicular to the plane of the 
polygon. All the polygon vertices must also be given with respect to this local coor- 
dinate frame although these may be precomputed. This transformation can be com- 
putationally expensive when done once for each of a number of polygons for each 
point P. However, if the transformation is performed, the method ought to work. 

The second possibility is to attempt to generalize the algorithm to 3-space. In 
that case, the “horizontal line to infinity” must be replaced by an unbounded 
horizontal plane passing through P. The intersection of this plane with an edge 
defined by the vertices Vi and Vi+ i, lies between the vertices if the parameter 

Cp - vi)* 

a=(v~+I-vi)z 

satisfies 0 < a < 1. The intersection point 

X = aVi+ i + (1 - a)V,. 

must then be found and tested to determine if it lies between P and the point at a 
in the horizontal plane, unless a is indeterminate, in which case the plane of the 
polygon is already horizontal and the 2-dimensional algorithm applies. 

(b) Wooff’s Algorithm 

Wooff’s algorithm [6] “uses the property that the sum of all angles formed 
between lines connecting a point P and the ith and (i + 1)th vertices of a given 
polygon is zero if P lies outside the polygon and +2n if P lies inside the polygon.” 
The implementation in two dimensions may be done by simply noting (Fig. 4) that 
the angle Oi between Vi and Vi+ 1 is given by 

FIG. 4. Wooll’s algorithhm in 3-space sums the angles joining P and V,. Note the “quadrant 

ambiguity” (branch cut) when crossing the negative M axis. 
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The first evaluation of the arc tan function may be kept since it becomes the second 
value of the arc tan when i + i+ 1. Thus for a polygon with N vertices, N values 
of Gi must be added and N evaluations of the arc tangent are required. In addition 
to the generally accepted truism that the arc tangent is an expensive computation, 
Wooff alludes to the accepted reality that “a number of problems” will arise with 
ATAN due to “quadrant ambiguities.” In my experience, these ambiguities are 
usually non-trivial to detect and computationally expensive to resolve. However, 
the algorithm can be generalized to 3-space by the simple expedient of introducing 
a standard local normalized vector coordinate system L, 6I, 6J, for each polygon 
where 6% and $I lie in the plane of the polygon. With this convention, we have 

Oi= tan-’ 
(vi-P)& 
(V,-p).IClftan-l :v’::::p’::: 

with the same comments holding as before. The resolution of quadrant ambiguities 
is considerably more difficult, and the case of open polygons must be specially 
treated. 

(c ) Convex Znclusion 

The method of convex inclusion [2,4] can be used to solve this problem in the 
case of convex and “star-shaped” polygons. The algorithm is two part (see Fig. 5). 
From a predetermined internal point Q (say the centroid), draw rays to each 
vertex, then: 

(1) identify the vertices Vi, Vi+, defining the wedge containing point P; 

(2) test for the handedness of the angle V,V,+,P to determine if P lies 
within/without the polygon. 

It is immediately evident that this algorithm is not applicable to the case of an 
open polygon, since a suitable point Q does not exist (dashed lines of Fig. 5). 

TO CD I TO Co 

FIG. 5. Identify the wedge bounded by Vi, V, + , containing P and test for the chirality of the angle 
V, V, + , P. This method (convex inclusion) fails if the polygon is open, since no point Q can be found. 
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The implementation in three dimensions, for closed, but convex polygons, is 
computationally expensive. For step 1, define the determinant 

P 

di= Q . 

vi 

Then point P lies inside the wedge bounded by Vi and Vi+ I if di < 0 and di+ , > 0 
and Vi are ordered clockwise. The method retains its validity if P lies on one of the 
rays (di = 0). Each such test requires nine multiplications and live additions. 

Once the proper wedge has been identified, the variable q is evaluated: 

Vi 
q=det V,+i . 

P 

If q < 0 then angle V,V,+ i P is clockwise and P is internal, with obvious extensions 
if it lies on the boundary or is external. Note that di and q change sign if Vi and 
Vi+ I are interchanged, so this test requires a further element of preconditioning: 
determine the orientation of the normal rather than letting the ordering carry this 
information (see Section 2). 

(d) Triangulation 

Yamaguchi’s triangulation method [7] is based on a simple test of the location 
of a point P(x, y, z, w), with respect to the half-plane containing a triangle, and is 
natural when a homogeneous coordinate system is being used. Given three points 
R,, R,, and R, defining the triangle “3 with homogeneous coordinates Rj = 
(xj, yj, zj, w,) define: 

Yo, zo, wo zo7 x0, wo 
Zi=det y,, zi, wi Ji=det z,, xi, wi 

Y2, z2, w2 z2, x2> w2 

x0, Yo, wo x0, Yo, zo 
Zi=det xi,y,, w1 bi=det x,,yi,zi . 

x2, Y2, w2 x23 Y2, z2 

Form the test variable bi= P .Si, where S;= (Z,, Ji, Zi, -Di) is a rldimensional 
vector. The sign of rri indicates whether P lies above or below the plane containing 
the vertices Ri (Fig. (6a)). 

For a convex polygon with vertices Vi, the above forms a basis for a test for 
point inclusion. Construct a “wall” along the ith edge of the convex polygon by 
choosing R, = Vi + , , R, = Vi, and R, to be the point at infinity in the direction of 

581/84/l-10 
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a 

FIG. 6. (a) Yamaguchi’s test determines whether P lies above or below the plane containing a 
triangle in homogeneous coordinates. (b) P lies inside a convex polygon if it lies on the same side of all 
normal planes each of which includes one bounding edge. 

the normal to the polygon (set w2 = 0) then construct Si corresponding to each side 
(Fig. (6b)). This may be precomputed. According to Yamaguchi, P lies inside the 
polygon if cri < 0 for all i when Vi are given in counter clockwise order when seen 
from the front. A more general test would specify that the sign of (TV does not 
change if P lies inside the polygon; this removes the dependence on the ordering of 
Vi. The determination of cr,. requires four multiplications and three additions, is 
valid for open polygons by omitting the missing side, and can possibly be extended 
to more dimensions. The method is extendible to a general polygon by subdividing 
that polygon into triangles employing an algorithm given in Ref. [7]. 

4. A NEW ALGORITHM 

The algorithm to be presented here makes use of vector invariant quantities 
throughout. Thus it is valid in either two or three (or more) dimensions without 
reference to any local coordinate system. It has the added advantage that it uses a 
geometrical quantity that is a function only of the geometry of the polygon being 
tested; this quantity-the edge vector-may be precomputed prior to any test. 
From now on we require that the polygon be convex. 

Consider Fig. 7a. If the point P lies inside the polygon, it most lie to the right of 
all the edges of that polygon, when the polygon is traversed in a clockwise direction 
along the edges. The vector (P-A) x (A-B) will point out of the plane of the 
polygon, if P lies to the right of the line A - B. So will the vector (A - B) x (B - C), 
provided the angle at B is less than rr. Form the test variable 

o=(P-A)x(A-B).(A-B)x(B-C) 

=(P-A).E 
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b 

l3 

A 

FIG. 7. (a) The vectors forming w when the line A-B forms one of the edges of the polygon. 
(b) The “edge vector” E for a bounding edge of a polygon. 

using elementary vector identities, where the “edge vector” E, defined by 

E=(A-B)a,-(B-C)cr, 

with 

cx,=(A-B).(B-C) 

q=(A-B).(A-B) 

is perpendicular to the edge A - B and points “inward,” since E . (A - B) = 0 and 
E . (B-C) < 0. See Fig. (7b). Notice that o is invariant under reversal of the. 
ordering of points, but changes sign if the angle at vertex B is greater than rc, since 
E will point “outward” in this eventuality. 

In what follows let us generalize to an N-gon by replacing vertices A, B, C with 
vi, Vi+l9 vi+2* Then the test variable associated with each vertex of a polygon is 

oi = (P - Vi). Ei, 

where 

Wi ~0 FOR ONE OR TWO VALUES OF i 

Wi ’ 0 AT LEAST ONCE 

N 

v, 

FIG. 8. PI,,,, are internal/boundary/external points. The associated o, lie in the ranges shown, 

respectively. 
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is precomputed. If the N-gon is known to be convex (see Section 5), then P must 
lie to the right of each and every edge when viewed from above. There are three 
possibilities for each vertex, see Fig. 8. If P lies inside the polygon, then wi > 0 for 
all values of i= 1, . . . . N. If P lies on one of the edges, then wi > 0 for all values of 
i=l , . . . . N but one or perhaps two (i = M) where o,,,, = 0 (within computational 
tolerance). If oi<O for any value of i, the point P lies outside the polygon. 

Note that: 

(1) the vectors Ei depend only on the geometry of the polygon and may be 
precomputed; 

(2) oj is a scalar invariant and is thus independent of the coordinate system; 

(3) only five additions and three multiplications are needed to find oi when 
Ei is precomputed; 

(4) only if P lies inside the polygon is it always necessary to make N deter- 
minations of oi; 

(5) the method is valid for open or closed polygons by simply reducing the 
value of N by one, provided the convention of Section 2 is adhered to; 

(6) wi does not change sign upon reversing the order of the vertices (viewing 
the polygon from below); 

(7) the method trivially generalizes to more than three dimensions. 

On most counts the test appears better suited for physics computations in many 
dimensions than the older algorithms, except if the vector Ei cannot for some 
reason be precomputed, if the polygon is known to be non-convex, or if 
homogeneous coordinates are being employed. If the polygon is known to be non- 
convex, the method of Yamaguchi may be used to subdivide it, in which case the 
test can be applied to the primal triangular subdivisions. The method of convex 
inclusion should be considered for those problems in which N is known to be large, 
the polygons are known to be closed, and ordering invariance is not needed, since 
this method scales as log N. Although both the method of Yamaguchi and the 
new method scale as N (with different coefficients in the worst case (P inside 
the polygon)), in the best case both of these methods could detect an exterior 
point in as little as one determination of their respective test variables. A stricture 
concerning the wisdom of blind adherence to asymptotic analysis can be found in 
Section 1.2 of Ref. [4]. 

5. A TEST FOR CONVEXITY 

As a corollary, we find that the new algorithm generates a simple test for the 
convexity of a polygon in n-space. Consider any ternary grouping of continguous 
vertices (Fig. 9). The centroid Pi given by 
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SECTION OF BOUNDARY 
/OF TEST POLYGON 
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FIG. 9. A test for convexity. Test the centroid of ternary groupings of vertices for inclusion. The test 
fails at the grouping prior to a concave vertex, if one exists. 

must be an interior point of each triangle. Apply the new algorithm to each of the 
exterior edges of the triangle by evaluating 

wj = (Pi - V,) . Ej, j= i- 1, i. 

If w, < 0, the angle bounded by V,, Vj+ , , Vj,z is > n and the polygon is 
convex. If wj > 0 for all contiguous ternary groupings, the polygon is convex. 
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